
A Denial of Service Attack against Fair

Computations using Bitcoin Deposits

Jethro Beekman

July 2014
Updated August 2015

Abstract

Bitcoin supports complex transactions where the recipient of a transaction
can be programmatically determined. Using these transactions, multi-
party computation protocols that aim to ensure fairness among partici-
pants have been designed. We present a Denial of Service attack against
these protocols that results in a net loss for some or all of the honest
parties involved, violating those fairness goals.

1 Introduction

Several recent works by Andrychowicz et al. [1, 2] (Protocol “ADMM”) and
Bentov and Kumaresan [3] (Protocol “BK”) describe multi-party computation
schemes in which Bitcoin deposits are used to ensure fairness. The general
idea is that parties in the computation make a deposit at the beginning of the
computation, which honest parties will get back in the end. This incentivizes
parties to share their result of the computation with the other parties.

In this work, we introduce a Denial of Service (DoS) attack that results
in a net loss for honest parties, destroying the incentive for honest parties to
participate. In our attack, dishonest parties will turn a profit at the cost of the
honest parties, which incentivizes participants to cheat. This undermines the
incentive structure of the underlying protocols. In particular, we note that the
security models of ADMM and BK did not consider the possibility of network-
level DoS. We show how a dishonest party can use network-level DoS against
honest parties.

2 Background

ADMM and BK are protocols for secure multi-party computation that are in-
tended to be fair. Traditional multi-party computation has the problem that
one or more dishonest parties might be able to learn the result of the distributed
computation and then walk away, so the honest parties never learn the result

1

of the computation. A perfectly fair protocol is one where this cannot happen:
intuitively, either everyone learns the outcome of the computation, or no one
does. In ADMM and BK, fairness is encouraged monetarily, but not guaranteed.
Fairness is accomplished by having all parties initially pay a deposit. Dishonest
parties who walk away forfeit their deposit and it is split among the honest par-
ties as compensation, while honest parties receive their deposit back after the
computation is finished. This is roughly how fairness and security are defined
for ADMM1 and BK.2

ADMM and BK use Bitcoin to define complex transactions like

P3
τ←−−−− :P1

q

C−−−−→ P2

which means P1 posts a Bitcoin transaction depositing q bitcoins (BTC); then,
P2 can post a Bitcoin transaction satisfying condition C and collecting q BTC
before time τ ; otherwise, after time τ , P3 can post a Bitcoin transaction col-
lecting q BTC. The protocols use a sequence of these transactions to provide
fairness.

For example, the 2-party BK protocol [3, §3.1] is defined as

P1
τ2←−−−−− :P1

q

C1∧C2−−−−−−−→ P2

P2
τ1←−−−−− :P2

q

C1−−−−−−−→ P1

with τ1 < τ2. Here, P1 and P2 have the ability to satisfy C1 and C2, respectively.
If both parties are honest, P1 will satisfy C1 before τ1 by publicly revealing a
suitable witness. This lets P1 receive q BTC from P2. Then, P2 can satisfy
C1 ∧ C2 before τ2 to receive q BTC from P1. This means that no one loses their
deposits and everyone learns the result of the computation. If P1 is dishonest
and does not satisfy C1 in time, P2 gets q BTC back at τ1 and later P1 gets
q BTC back at τ2. In this case, no one loses their deposits and no one learns
the result of the computation. If P2 is dishonest and does not satisfy C1 ∧ C2 in
time, P1 has already gotten q BTC at τ1 and later P1 gets q BTC back at τ2.
Here, P2 learns the result of the computation while P1 does not, but P2 has a
net loss of q BTC and P1 has a net gain of q BTC.

ADMM is similar, but uses transactions of the form P2
τ←− :P1

q

C−−→ P1 instead

of P1
τ←− :P1

q

C−−→ P2 (the difference is in the target parties).

1“Formally, we say that the protocol is secure if for any strategy of the adversary, that con-
trols the network and corrupts the other parties, (1) the execution of the protocol terminates
in [some time], and (2) the expected payoff of each honest party is at least negligible.” [2, §IV]

2“Loosely speaking, our notion of fair secure computation guarantees: an honest party
never has to pay any penalty; [and] if a party aborts after learning the output and does not
deliver output to honest parties, then every honest party is compensated.” [3, §2.1]

2

3 Threat model and attack

Our threat model considers an adversary A that participates in a multi-party
computation protocol using Bitcoin and is able to perform a network-level Denial
of Service attack against another party B in the same computation for extended
periods of time. This inclusion of control over the network is consistent with
the security definition for ADMM: they assume the adversary has control over
the network, which is sufficient to launch a network-level DoS attack against
another party.1

We show how an adversary A that pretends to be honest can turn another
honest party B into a dishonest party in the eyes of the protocol by performing
a DoS attack on B at the appropriate time.

Let’s reconsider the 2-party BK protocol with P1 being malicious. First, P1

can pretend to be honest and satisfy C1 before τ1 to collect q BTC. Then, P1

can immediately perform a DoS attack on P2, lasting at least until τ2. P2 will
be unable to post a transaction satisfying C1 ∧ C2 during this time, and at τ2
P1 will be able to collect its original deposit q BTC. P1 now has 2q BTC while
it deposited just q BTC at the beginning, for a net gain of q BTC. P2 lost its
deposit, for a net loss of q BTC, even though it might have been intending and
trying to satisfy C1 ∧ C2. This attack prevents the adversary from learning the
output of the computation.

Similar attacks work against ADMM (see appendix A) and the same proto-
cols extended for more than 2 parties.

4 Discussion

Since the adversary will not learn the output of the computation, further analysis
of the outcomes is necessary to determine whether performing the attack is
worthwhile. For example, in the ADMM fair 2-party lottery protocol [2], each
player deposits at least 2 BTC and plays with another 1 BTC. The winner
receives their deposit and the prize of 2 BTC for a total gain of 1 BTC. Losers
just receive their deposit for a loss of 1 BTC. Using this attack results in the
adversary receiving both deposits for a total gain of 1 BTC, the same as a
guaranteed win. The victim gets nothing for a loss of 3 BTC and the prize of
2 BTC is stuck in limbo.

If these protocols were to be used in practice, this attack would enable
adversaries to turn DoS capability into direct financial gain. Most other DoS
monetization schemes rely on being paid for the DoS service [4], extortion [6],
or selling goods obtained through influencing online auctions [7].

In previous work, Lindell and Pinkas [5] describe desired properties for ideal
secure multiparty computation protocols. One of these is guaranteed output de-
livery : Corrupted parties should not be able to prevent honest parties from re-
ceiving their output. As mentioned in the introduction, the protocols discussed
in this paper do not exhibit this property but encourage it through financial
means. Both protocols are built on a notion of fairness, including that honest

3

parties don’t lose their deposit. We can codify this property—in a way similar
to guaranteed output delivery—as guaranteed deposit return: Corrupted par-
ties should not be able to prevent honest parties from receiving their deposit.
ADMM and BK do not provide guaranteed deposit return, as our attacks show.
We suggest that guaranteed deposit return should be considered part of what it
means to provide fairness and recommend future protocols include this in their
designs.

Denial of Service attacks are notoriously hard to defend against. A potential
solution that future work could focus on is using very large time scales. This
could give a party under attack an opportunity to reroute the message satisfying
the condition. This is not a cure-all, as a powerful enough adversary might still
be able to maintain the DoS attack for this prolonged period of time. However,
it would give the victim a chance to find another network connection (e.g. at a
coffee shop, Internet cafe, etc.) to collect his deposit. Also, using longer time
scales would mean that an honest party would have to wait longer to reclaim the
deposit from a dishonest party, even when no DoS is in progress, which might
make these protocols less attractive.

5 Conclusion

In this work, we have demonstrated a Denial of Service attack against two recent
fair multi-party computation protocols. This attack both defies the fairness
aimed to be provided by these protocols and violates the security guarantees
those protocols claimed to provide. We highlight an avenue future research
could explore.

Acknowledgments

Thanks to the anonymous reviewers, Frank Li, and David Wagner for helpful
feedback.

References

[1] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz
Mazurek. Fair two-party computations via bitcoin deposits. In 1st Workshop
on Bitcoin Research, March 2014.

[2] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz
Mazurek. Secure multiparty computations on bitcoin. In Security and Pri-
vacy (SP), 2014 IEEE Symposium on, May 2014.

[3] Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair pro-
tocols. In Advances in Cryptology – CRYPTO 2014, Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2014.

4

[4] Mohammad Karami and Damon McCoy. Understanding the emerging threat
of ddos-as-a-service. In Presented as part of the 6th USENIX Workshop on
Large-Scale Exploits and Emergent Threats, 2013.

[5] Yehuda Lindell and Benny Pinkas. Secure multiparty computation for
privacy-preserving data mining. Journal of Privacy and Confidentiality, 1
(1):59–98, 2009.

[6] Denise Pappalardo and Ellen Messmer. Extortion via DDoS on the rise.
Network World, 2005. URL
http://www.networkworld.com/article/2320986.

[7] Michael Wellman and Peter R. Wurman. Real time issues for internet auc-
tions. In 1st IEEE Workshop on Dependable and Real-Time E-Commerce
Systems, 1998.

A DoS Attack on Protocol “ADMM”

The attack against ADMM is very similar to the one on BK shown in Sec-
tion 3. It is detailed here for completeness. Let’s reconsider the 2-party ADMM
protocol:

P2
τ←−−−− :P1

q

C1−−−−−→ P1

P1
τ←−−−− :P2

q

C2−−−−−→ P2

Now consider P1 being malicious. P1 can pretend to be honest and satisfy C1
before τ to collect its original deposit q BTC. Simultaneously, P1 can perform a
DoS attack on P2, lasting at least until τ . P2 will be unable to post a transaction
satisfying C2 during this time, and at τ P1 will be able to collect the q BTC
that P2 deposited. P1 now has 2q BTC while it deposited just q BTC at the
beginning, for a net gain of q BTC. P2 lost its deposit, for a net loss of q BTC,
even though it might have been intending and trying to satisfy C2.

5

