
Challenges For Scaling Applications Across Enclaves
Jethro G. Beekman

Fortanix
jethro@fortanix.com

Donald E. Porter
Fortanix and UNC Chapel Hill

porter@fortanix.com

Abstract
At Fortanix, we are developing cloud-scale security infras-
tructure using SGX. For example, our Self-Defending Key
Management Service (SDKMS) can span multiple machines
and enclaves, rendering a more scalable and cost-effective
alternative to a traditional Hardware Security Module (HSM).
This paper describes several subtle, practical, and under-

explored problems in the space of building scalable, trusted
applications, based on our experience building distributed
SGX systems. In particular, we discuss shortcomings in re-
mote attestation for microservice-style applications, soft-
ware updates, and opportunities to reflect trustworthy de-
velopment practices in attestation features.

CCS Concepts • Security and privacy→ Trusted com-
puting; Distributed systems security;
ACM Reference Format:
Jethro G. Beekman and Donald E. Porter. 2017. Challenges For
Scaling Applications Across Enclaves. In SysTEX’17: 2nd Workshop
on System Software for Trusted Execution, October 28, 2017, Shanghai,
China. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/
3152701.3152710

1 Introduction
Intel SGX creates an opportunity to build cost-scalable soft-
ware systems that require trusted execution. A number of
datacenter and cloud applications are designed to scale across
relatively inexpensive servers, i.e., additional capacity can
be added in small increments in monetary cost. Cloud com-
puting unlocks even finer cost increments by sharing under-
utilized hardware. By extending commodity x86 chips with
a trusted execution environment, SGX unlocks similar cost-
scalability for security-sensitive applications.

Remote attestation is an essential feature for distributing
trusted execution. In particular, for a simple client-server ar-
chitecture, SGX’s remote attestation is sufficient for a client
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SysTEX ’17, October 2017, Shanghai, China
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.
ACM ISBN 978-1-4503-5097-6/17/10. . . $15.00
https://doi.org/10.1145/3152701.3152710

and server to check that the other end of a network connec-
tion is running software that is signed by a trusted party. In
other words, current remote attestation can establish trust
between two points over a network.

The challenge for larger-scale applications is moving from
point-to-point trust toward end-to-end trust. Modern cloud
applications are often composed of multiple network-con-
nected services, such as the increasingly popular microser-
vices architecture. A client may connect to a front-end node,
which then dispatches a request to a number of loosely cou-
pled and potentially shared back-end services. For instance,
a cloud-based document service may store the data in a back-
end key-value store. For sensitive data, the client may wish
to authenticate not only the front-end software, but also
that the front-end is storing data in a trustworthy key-value
back-end. In this example, the front-end is implicitly trusted
to validate the back-end. As applications grow to span more
enclaves, the TCB and attack surface also grow, increasing
the risk that one enclave may become compromised and
undermine the security of the entire system.
This paper also observes that a more expressive remote

attestation mechanism could also be a natural point for fault
isolation and end-to-end policy enforcement. For instance,
with the right language and analysis tools (or sandbox), one
can attest to certain security-relevant properties, such as the
absence of additional network connections.

The observations in this paper are motivated by our expe-
riences developing a cloud-scale key-management service
using SGX. We note that these issues both apply to other
trusted execution environments (TEEs) than SGX and are
outside of the explicit threat model considered by most TEEs.
On one hand, it is clear that rote use of remote attestation
is not sufficient. On the other end of the spectrum there are
very general-purpose solutions, such as BAN logic [2]. The
challenge is identifying the right abstractions and principals
which capture the essence of these problems, minimizing
the risk of developer or administrator error. The paper also
briefly discusses opportunities to integrate trustworthy de-
velopment practices into the signing and attestation process.

2 End-To-End Attestation
For a composite service, remote attestation only reports on
the front-end enclave. A client with particularly sensitive
data may want end-to-end attestation reports, knowing that
all binaries that handled client data were trusted, not sim-
ply the front-end. This issue becomes even more important

https://doi.org/10.1145/3152701.3152710
https://doi.org/10.1145/3152701.3152710
https://doi.org/10.1145/3152701.3152710

when a service handles data with varying regulatory compli-
ance constraints, such as a cloud-based app handling some
data for a medical clinic that is bound by HIPAA, as well as
educational data that is subject to FERPA requirements.
We see an opportunity to develop more expressive attes-

tation reports of composed services, wherein a client can
see that only trusted binaries handled their data, end-to-end.
Moreover, it would be desirable if these reports could attest
that the back-end servers upheld certain policy goals, such
as certified to be compliant with a given regulation.

In tensionwith this goal is the need to keep an architecture
opaque to a client, if the architecture itself is a competitive
advantage. Even in this situation, such a mechanism can be
useful strictly within the application to detect compromised
nodes. Additionally, one may be able to encode policies in a
way that does not reveal system internals.

3 Software Updates
As bugs or vulnerabilities are discovered in the software, or
the software simply improves, the software deployed at each
node in a distributed system needs to be updated. It is often
impractical to take all nodes offline at once, as many services
need high degrees of availability; thus, rolling updates are
common. Here we use the term “node” to refer to trusted
software running in a remote enclave.

As an update is being deployed, the system needs a period
where updated nodes still communicate with nodes that are
running older (potentially vulnerable) software. However,
after a reasonable period, if a node was missed during the
update and remains on a stale version, it should be evicted
from the system. Even a single trusted, yet compromised,
node can have disastrous consequences.
Remote attestation alone cannot express such a policy.

The vulnerable, older versions of the software are signed by
a trusted party, and the new versions must initially trust the
old. One possibility is to trust older versions of the software
until a quorum of nodes have been updated, at which point
the other nodes can be considered failed until they are up-
dated. A challenge for this approach is carefully reasoning
about the expected number of additional failures the system
may encounter, lest the system become unavailable.

4 Trustworthy Development Practices
Attestation and software signing is only implicitly connected
to the root issue of trustworthiness. There is a point at which
a human being decides to sign a binary. In this section, we
explain how this decision could be an explicit function of
code quality efforts, as well as specific code attributes.

Most software companies already take a number of steps
to ensure trustworthy code. In terms of code quality, current
best practices are to develop features on a branch, and only
merge that branch after it passes regression testing and code
review. In terms of security, penetration tests or audits are

common. Particularly-sensitive code may be analyzed for
additional properties, or even formally verified.
However, a binary is ultimately signed by a human. This

human may review the code or build process, but is unlikely
to check the entire development history for best practices
before signing. Moreover, the signer is making a number
of tacit assumptions [5]. For instance, an internal attacker
could have replaced the trusted compiler or resulting binary,
or could have inserted a change deep in the version control
history that was not properly reviewed.
We see an opportunity to reduce the risk of error and in-

sider attacks by making binary signing an automated output
of code quality tools, which could be configured to only sign
a binary that was built using trusted tools, from code that
followed trustworthy development practices.
We also see an opportunity for signing more expressive

certificates: not just that a given binary was produced by a
particular organization, but that the signer is certifying that
the code has been tested (or is proved) to have certain prop-
erties. For instance, related to composition of microservices,
one might sign that the code does not make any recursive
calls to other microservices. A useful side-effect is the ability
to determine if a vendor’s software is not trustworthy, such
as finding a counter-example to an advertised property.

5 Related Work
A few prior works have investigated distributing applications
across enclaves. Beekman et al. [1] describe how to share
private data during software upgrades, but does not ensure
a consistent secure state amongst all nodes. SGX has been
integrated into data analytic frameworks [3, 6], but these
primitives are unlikely to be generically reusable.
The Nexus OS includes an extensible, logical attestation

framework [4], wherein applications can define rich policies,
including policies dealing with time. A key difference is that
Nexus is built on a trusted OS, which can provide a rich policy
substrate; an open challenge is implementing Nexus-style
attestations on top of SGX remote attestation primitives.

References
[1] Jethro G. Beekman, John L. Manferdelli, and David Wagner. 2016.

Attestation Transparency: Building secure Internet services for legacy
clients. In AsiaCCS.

[2] Michael Burrows, Martin Abadi, and Roger Needham. 1990. A Logic
of Authentication. TOCS 8, 1 (Feb. 1990), 18–36.

[3] Felix Schuster, Manuel Costa, Cedric Fournet, Christos Gkantsidis,
Marcus Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015.
VC3: Trustworthy Data Analytics in the Cloud Using SGX. InOakland.

[4] Emin Gün Sirer, Willem de Bruijn, Patrick Reynolds, Alan Shieh, Kevin
Walsh, Dan Williams, and Fred B. Schneider. 2011. Logical Attestation:
An Authorization Architecture for Trustworthy Computing. In SOSP.

[5] Ken Thompson. 1984. Reflections on Trusting Trust. CACM 27, 8 (Aug.
1984), 761–763.

[6] Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa,
Joseph E. Gonzalez, and Ion Stoica. 2017. Opaque: An Oblivious and
Encrypted Distributed Analytics Platform. In NSDI.

2

	Abstract
	1 Introduction
	2 End-To-End Attestation
	3 Software Updates
	4 Trustworthy Development Practices
	5 Related Work
	References

